Photoreceptor outer segment phagocytosis attenuates oxidative stress-induced apoptosis with concomitant neuroprotectin D1 synthesis.
نویسندگان
چکیده
Photoreceptor cell (rods and cones) renewal is accompanied by intermittent shedding of the distal tips of the outer segment followed by their phagocytosis in the retinal pigment epithelial (RPE) cells. This renewal is essential for vision, and it is thought that it fosters survival of photoreceptors and of RPE cells. However, no specific survival messenger/mediators have as yet been identified. We show here that photoreceptor outer segment (POS) phagocytosis markedly attenuates oxidative stress-induced apoptosis in ARPE-19 cells in culture. This phenomenon does not seem to be a generalized outcome of phagocytosis because nonbiological (polystyrene microsphere) phagocytosis did not elicit protection. The free docosahexaenoic acid (DHA) pool size and neuroprotectin D1 (NPD1) content increased during POS phagocytosis but not during microspheres phagocytosis. We have also explored other lipid mediators [lipoxin A4 and 15(S)- and 12(S)-hydroxyeicosatetraenoic acids] under these conditions and found them unchanged upon POS phagocytosis. Moreover, oxidative stress challenge to RPE cells undergoing POS phagocytosis further increased DHA and NPD1 content. Under these conditions, NPD1 was found within the RPE cells as well as in the culture medium, suggesting autocrine and paracrine bioactivity. Furthermore, using deuterium-labeled DHA, we show that as the availability of free DHA increases during oxidative stress, NPD1 synthesis is augmented in ARPE-19 cells. Our data suggest a distinct signaling that promotes survival of photoreceptor and RPE cells by enhancing the synthesis of NPD1 during phagocytosis. Taken together, NPD1 may be a mediator that promotes homeostatic regulation of cell integrity during photoreceptor cell renewal.
منابع مشابه
Rescue and repair during photoreceptor cell renewal mediated by docosahexaenoic acid-derived neuroprotectin D1.
Retinal degenerative diseases result in retinal pigment epithelial (RPE) and photoreceptor cell loss. These cells are continuously exposed to the environment (light) and to potentially pro-oxidative conditions, as the retina's oxygen consumption is very high. There is also a high flux of docosahexaenoic acid (DHA), a PUFA that moves through the blood stream toward photoreceptors and between the...
متن کاملNeuroprotectin D1-mediated anti-inflammatory and survival signaling in stroke, retinal degenerations, and Alzheimer's disease.
Docosahexaenoic acid (DHA), the main omega-3 fatty acid, is concentrated and avidly retained in membrane phospholipids of the nervous system. DHA is involved in brain and retina function, aging, and neurological and psychiatric/behavioral illnesses. Neuroprotectin D1 (NPD1), the first-identified stereoselective bioactive product of DHA, exerts neuroprotection in models of experimental stroke by...
متن کاملNeurotrophins induce neuroprotective signaling in the retinal pigment epithelial cell by activating the synthesis of the anti-inflammatory and anti-apoptotic neuroprotectin D1.
The integrity of retinal pigment epithelial cells is critical for photoreceptor cell survival and vision. The essential omega-3 fatty acid, docosahexaenoic acid, attains its highest concentration in the human body in photoreceptors. Docosahexaenoic acid is the essential precursor of neuroprotectin D1 (NPD1). NPD1 acts against apoptosis mediated by A2E, a byproduct of phototransduction that beco...
متن کاملNeuroprotectin D1: a docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress.
Docosahexaenoic acid (DHA) is a lipid peroxidation target in oxidative injury to retinal pigment epithelium (RPE) and retina. Photoreceptor and synaptic membranes share the highest content of DHA of all cell membranes. This fatty acid is required for RPE functional integrity; however, it is not known whether specific mediators generated from DHA contribute to its biological significance. We use...
متن کاملNeurotrophins enhance retinal pigment epithelial cell survival through neuroprotectin D1 signaling.
Integrity of retinal pigment epithelial cells is necessary for photoreceptor survival and vision. The essential omega-3 fatty acid, docosahexaenoic acid, attains its highest concentration in the human body in photoreceptors and is assumed to be a target for lipid peroxidation during cell damage. We have previously shown, in contrast, that docosahexaenoic acid is also the precursor of neuroprote...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 104 32 شماره
صفحات -
تاریخ انتشار 2007